Abstract

AbstractPhosphorus is an important n-type dopant for both silicon and silicon carbide. Although solid-state diffusion of phosphorus in silicon has been well documented and experimentally proven, not much is known about phosphorus solid-state diffusion in silicon carbide, especially at lower temperatures. A convenient source of phosphorus for solid-state diffusion in silicon carbide is phosphorus oxide. The possibility of using phosphorus oxide as a dopant source for silicon carbide is investigated by considering the probable reactions between silicon carbide and phosphorus oxide at temperatures below 1700 K using published thermodynamic data. By considering the standard free energies of reactions, it can be shown that phosphorus can be introduced in silicon carbide at temperatures below 1700 K using phosphorus oxide. A successful development of low temperature dopant incorporation in silicon carbide would reduce the need for high temperature processes and prevent process-induced thermal degradation of critical device structures such as the oxide-semiconductor interface. Experimental results showing phosphorus impurity incorporation and activation in 4H-SiC are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call