Abstract

Polyamidoamine (PAMAM) modified poly(styrene-co-divinylbenzene) absorbents carrying phosphorus functional groups (PS-PAMAM-PPA) were prepared and used as adsorbents for the adsorption of uranium(VI) from aqueous solution. Different generations of PAMAM were used for obtaining different chelating resins, PS-PPA, PS-1.0G PAMAM-PPA, PS-2.0G PAMAM-PPA, PS-3.0G PAMAM-PPA and PS-4.0G PAMAM-PPA. The synthesized resins were characterized by FTIR and XPS. The effects of many physio-chemical properties on metal ion adsorption to adsorbent phase, such as solution pH, kinetic studies, initial uranium concentration, temperature, were investigated using batch method. The results showed that the maximum adsorption capacity (99.89mg/g) was observed at the pH 5.0 and 25°C with initial U(VI) concentration 100mg/L and adsorbent dose 1g/L. PS-1.0G PAMAM-PPA had the largest adsorption capacity for U(VI) compared with other prepared adsorbents. The adsorption kinetics of U(VI) onto PS-1.0G PAMAM-PPA followed the mechanism of the pseudo-second-order equation, indicating that the chemical adsorption was a rate-limiting step. The calculated thermodynamic parameters (ΔG, ΔH, ΔS) stated that the adsorption of U(VI) onto PS-1.0G PAMAM-PPA were spontaneous, endothermic and feasible. The adsorption isotherms obeyed the Langmuir isotherm models. The desorption studies showed that PS-1.0G PAMAM-PPA could be used repeatedly and adsorption and desorption percentage did not have any noticeable loss after 27 cycles in a fixed bed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.