Abstract
Phosphorus-modified copper ferrite (P–CuFe2O4) nanoparticles were prepared by a simple sol-gel auto-combustion process and used for the photocatalytic ozonation of lomefloxacin (LOM). The morphology, crystallinity, and structure of the synthesized CuFe2O4 and P–CuFe2O4 nanoparticles were investigated using various techniques. The high-performance liquid chromatography (HPLC) analysis revealed that the degradation of LOM achieved a 99% reduction after a duration of 90 min in the photocatalytic ozonation system. In accordance with the charge-to-mass ratio, four intermediates were proposed with the help of their fragments obtained in LC–MS/MS. The degradation kinetics of lomefloxacin followed a pseudo-first order reaction, and the degradation mechanism was proposed based on the results. P0.035Cu0.965Fe2O4 showed the highest total organic carbon (TOC) removal with 20.15% in 90 min, highest specific surface area and the highest fluoride and ammonium production using the ion chromatography (IC). The experimental results obtained from the electron paramagnetic resonance (EPR) analysis indicated that the modified P–CuFe2O4 samples exhibited significantly elevated levels of superoxide (.O2−) production compared to the CuFe2O4 samples. The findings of this study demonstrate that the introduction of phosphorus modification into the copper ferrite photocatalyst led to an augmentation of both the specific surface area and the total pore volume. Furthermore, the incorporation of phosphorus served to promote the efficient separation of electron-hole pairs by effectively trapping electrons in the conduction band, hence enhancing the degradation efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.