Abstract

The phosphorus metabolism of Pyrocystis noctiluca Murray (Schuett) 1886 has characteristics which may enhance its potential for success in orthophosphate impoverished waters. The steady-state phosphate uptake rates were equal in the light and dark, and were directly proportional to both the phosphorus cell quota and the cell division rate. In contrast, nutrient-saturated uptake rates were multiphasic, faster in the light than the dark, 2 to 4 orders of magnitude greater than steady-state rates, and were inversely proportional to both the phosphorus cell quota and the cell division rate. These uptake characteristics suggest that P. noctiluca may take up phosphate coincidently at their typically low ambient concentrations as well as to exploit episodic nutrient events in nature. Cell division rates were a hyperbolic function of the ambient orthophosphate concentration. The shortest doubling time was 8.7 d, the phosphate concentration at half the maximum division rate was 0.15 μM and the threshold, concentration for cell division was ca 0.05 μM PO43-. Division rates of P. noctiluca in the ocean are much faster than predicted from the measured ambient orthophosphate concentrations. Since this dinoflagellate has high naturally occurring alkaline phosphatase activities, and can utilize organic-P compounds, we suggest that organic-P can be as important as orthophosphate in supporting the observed division rates of P. noctiluca in the sea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.