Abstract

Energy and plastic potential dysfunction of erythrocytes and lymphocytes among people with inflammatory breast cancer, infiltrative stomach cancer, and infiltrative colon cancer is characterized by a more aggressive clinical course and poor prognosis. We explored the features of energy metabolism and phosphorus metabolism disorders in the erythrocytes and lymphocytes of patients with inflammatory breast cancer, infiltrative stomach cancer, and infiltrative colon cancer as a predicting factor in the course of the disease. 49 people were examined; the 1st group had infiltrative stomach cancer (n=17); the 2nd group had infiltrative colon cancer (n=11); the 3rd group had inflammatory breast cancer (n=21). Glycerol-3-phosphate dehydrogenase activity was 1.8 times reduced (p≤0.005), and the activity of glyceraldehyde-3-phosphate dehydrogenase in erythrocytes of patients with cancer at the main localization increased 2.5 times, compared with normal. Inflammatory breast cancer patients had a statistically significant decrease (p<0.005) in erythrocytes adenosine triphosphate content by an average of 56.5% compared with the normal ratio, and in cases of patients with gastric and colorectal cancer, a decrease of 67%. Excessive use of phosphorus for energy metabolism and adenosine triphosphate production destroys the balance of energetic and plastic potentials of erythrocytes and lymphocytes in inflammatory breast cancer, infiltrative stomach, and infiltrative colorectal cancers patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.