Abstract

Lake Erie has undergone re-eutrophication beginning in the 1990s, even though total phosphorus (TP) loads to the lake continued to slowly decline. Using our 1982 and 2007–10 studies of the bioavailability of dissolved and particulate phosphorus export from major Ohio tributaries, together with our long-term TP and dissolved reactive phosphorus (DRP) loading data, we estimated long-term annual export of dissolved and particulate bioavailable phosphorus. DRP was found to adequately represent dissolved bioavailable export while 26–30% of the particulate phosphorus (PP) was extractable by 0.1N NaOH, a frequently used indicator of PP bioavailability. During the period of re-eutrophication (1991–2012), DRP export from nonpoint sources in the Maumee and Sandusky rivers increased dramatically while NaOH-PP export had a slight decline for the Maumee and a small increase in the Sandusky. For the Cuyahoga River, both DRP and NaOH-PP increased, but these changes were small in relation to those of the Maumee and Sandusky. During this period, whole lake loading of both non-point and point sources of phosphorus declined. This study indicates that increased nonpoint loading of DRP is an important contributing factor to re-eutrophication. Although nonpoint control programs in the Maumee and Sandusky have been effective in reducing erosion and PP export, these programs have been accompanied by increased DRP export. Future target loads for Lake Erie should focus on reducing bioavailable phosphorus, especially DRP from nonpoint sources. Agricultural P load reduction programs should address both DRP and PP, and take into account the lower bioavailability of PP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call