Abstract

The reduction of dioxygen to water is crucial in biology and energy technologies, but it is challenging due to the inertness of triplet oxygen and complex mechanisms. Nature leverages high-spin transition metal complexes for this, whereas main-group compounds with their singlet state and limited redox capabilities exhibit subdued reactivity. We present a novel phosphorus complex capable of four-electron dioxygen reduction, facilitated by unique phosphorus-ligand redox cooperativity. Spectroscopic and computational investigations attribute this cooperative reactivity to the unique electronic structure arising from the geometry of the phosphorus complex bestowed by the ligand. Mechanistic study via spectroscopic and kinetic experiments revealed the involvement of elusive phosphorus intermediates resembling those in metalloenzymes. Our result highlights the multielectron reactivity of phosphorus compound emerging from a carefully designed ligand platform with redox cooperativity. We anticipate that the work described expands the strategies in developing main-group catalytic reactions, especially in small molecule fixations demanding multielectron redox processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call