Abstract

Ramírez-Ávila, J. R., Sotomayor-Ramírez, D., Martínez-Rodríguez, G. A. and Pérez-Alegría, L. R. 2011. Phosphorus in runoff from two highly weathered soils of the tropics. Can. J. Soil Sci. 91: 267–277. Agricultural fields with high soil phosphorus (P) content are important contributors to surface water degradation. Two consecutive simulated rainfall events were conducted on two Ultisols previously amended with inorganic P fertilizer or broiler litter. Soil test P (Bray 1 and Olsen) levels evaluated ranged from 1 to 350 mg kg−1. Surface runoff concentrations of total P (TP) and dissolved P (DP) generated by a 30-min runoff event were quantified. Runoff DP concentrations ranged from 0.08 to 3.98 mg L−1in fertilizer P-amended soils and from 0.08 to 4.93 mg L−1in broiler litter-amended soils. A single exponential model adequately described the relationships between soil test P and DP concentrations in runoff. For each soil, the soil test P-DP concentration relationships were positively influenced by soil organic matter and negatively influenced by antecedent soil moisture (P<0.05). For both soils, the soil test P-DP concentration relationships were positively influenced by groundcover percentage and negatively influenced by slope. Environmental soil test P critical levels corresponding to a runoff threshold of 1 mg L−1DP, ranged between 176 and 296 mg kg−1(Olsen) and 143 to 276 mg kg−1(Bray 1) in soils amended with fertilizer-P. In broiler litter-amended soils, threshold values were 88 and 111 mg kg−1using Olsen and Bray 1, respectively. Differences in surface runoff-P concentrations due to amendment sources, antecedent soil moisture content, soil organic matter, groundcover and slope suggest that these factors need to be considered in P management decisions at the farm level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call