Abstract

Growing concern over the ecological consequence of phosphorus (P) enrichment in freshwater wetlands has elicited considerable debate over the concentration of water column P associated with eutrophication. In the oligotrophic Everglades, the displacement of native communities by enriched ones is widespread and has occurred at sites experiencing only minimal elevations in P input. To help define regulatory criteria for P inputs to the Everglades, we constructed an experiment that mimics P input to the natural system by continuously delivering P at concentrations elevated 5, 15 and 30 μg l −1 above ambient to 100-m long flow-through channels. We compared patterns of P accumulation in the water, periphyton, detritus and soils among the channel treatments and also along a 16 km transect from an enriched canal that inflows to the interior of the same marsh. Water column TP and SRP were unrelated to input TP concentration in both the experiment and the marsh transect. However, concentrations of TP in periphyton mats were significantly elevated at all levels of experimental enrichment and as far as 2 km downstream from water inputs into the marsh. Elevated periphyton TP was associated with significant loss of periphyton biomass. In oligotrophic wetlands, traditional measures of water column SRP and TP will substantially underestimate P loading because biotically incorporated P is displaced from the water column to benthic surfaces. Using periphyton TP as a metric of P enrichment is uncomplicated and analogous to pelagic TP assessments in lakes where most P is sequestered in phytoplankton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.