Abstract

Phosphate fertilization is an important tool for achieving high yields in soybean, especially in tropical soils where phosphate fertilization efficiency is low. Fertilizers with improved efficiency, such as polymer-coated fertilizers, are one of several strategies to increase P fertilization efficiency. The objective of this study was to evaluate plant growth, leaf P content, soybean yield, and P fertilization efficiency in different seasons in response to P rates and sources. A factorial experiment (2 x 4) + 1 using two P sources (monoammonium phosphate (MAP) and Policote-coated MAP), four P rates (40, 80, 120, and 160 kg P2O5 ha-1), and the control (no P fertilization) was conducted with soybean in the 2016-2020 seasons. Phosphate fertilization increased soybean yield and was affected by P rates and sources. Soybean yield increased from 1464.7 kg ha-1, 468.4 kg ha-1, and 2297.3 kg ha-1 without P fertilization to 3,638.5 kg ha-1, 3,682.1 kg ha-1, and 3,856.7 kg ha-1, respectively, when MAP was applied at 158.0, 125.3, and 160 kg ha-1 P2O5, while when Policote coated MAP, the maximum productivity was 3,950.3 kg ha-1, 4,380.5 kg ha-1 and 4,343.0 kg ha-1 with 159.0, 160.0 and 140.1 kg ha-1 P2O5, respectively, in 2017/2018, 2018/2019 and 2019/2020 seasons. Increasing phosphate fertilizer rates decreased agronomic P use efficiency (APUE), which was mitigated by P-coated fertilizer (fertilizer with improved efficiency). Lower APUE was observed in the 2019/2020 season, likely as a result of residual effects from previous phosphate fertilizer applications

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call