Abstract

Plant communities on nutrient-poor soils are thought to use nutrients more efficiently to produce biomass than plant communities on nutrient-rich soils. Yet, increased efficiency with declining soil nutrients has not been demonstrated empirically in lowland tropical rain forests, where plant growth is thought to be strongly limited by soil nutrients, especially phosphorus (P). We tested for higher P uptake and use efficiency across a 16-fold soil P gradient in lowland Borneo by measuring the P content of aboveground net primary productivity (fine litter production plus new tree growth; ANPP) for 24 months. Extractable soil P was positively related to litter production, tree growth, and ANPP. Efficiency of P response (ANPP/available soil P), uptake (P uptake/available soil P), and use (ANPP/P uptake) increased monotonically with declining soil P and was significantly higher on P-rich soil than P-poor soil. Increased P uptake and use efficiency with declining soil P enabled higher than expected plant produc...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.