Abstract

Using electron paramagnetic resonance (EPR), Fourier-transform infrared absorption (FTIR) and temperature programmed desorption (TPD), we have investigated the doping of silicon nanocrystals (Si-ncs) and the interaction between intrinsic defects and dopants. Si-ncs were produced in a low-pressure microwave plasma reactor using silane as precursor gas. Phosphorus doping was achieved by addition of phosphine to the precursor gas. The low temperature EPR spectra of all P-doped samples display a line at g = 1.998 , which is the fingerprint of substitutional P in crystalline silicon for [ P ] > 10 18 cm - 3 . In addition, the characteristic hyperfine signature of P in Si is also observed for samples with nominal P doping levels below 10 19 cm - 3 . Two more features are observed in our EPR spectra: a broad band located at g = 2.0056 , due to isotropic Si dangling bonds (Si-dbs), and an axially symmetric powder pattern ( g ⊥ = 2.0087 , g ∥ = 2.0020 ) arising from Si-dbs at the interface between the crystalline Si core and a native oxide shell. The formation of this oxide layer and the presence of different H-termination configurations are revealed by FTIR spectroscopy. The density of Si-dbs is reduced in P-doped samples, indicating a sizable compensation of the doping by Si-dbs. This compensation effect was verified by H desorption, which enhances the density of Si-dbs, in combination with TPD and FTIR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.