Abstract

In this work, a novel and facile sequential cation-exchanging strategy was developed to synthesize phosphorus doped g-C3N4 nanotubes, and resulted nanotubes were composed of small nanorods with length of several hundred nanometers by oriented aggregation. As obtained products exhibit greatly enhanced photocatalytic hydrogen evolution with rate of 4.59 mmol h-1 g-1, which is 16 times higher than that of the bulk g-C3N4 under visible light irradiation. Mechanism investigation reveals that the superior photocatalytic property could be attributed to its improved visible light absorbance, well suppressed charges recombination and nanostructural construction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call