Abstract

Exploiting the advantages of graphitic carbon nitride doped with phosphorus (xP-CN) electrodes were designed for high-performance hybrid asymmetric supercapacitor via facile hydrothermal and thermal decomposition techniques. The structural, surface chemistry, functional and morphological characterizations evidence depict successful phosphorus incorporation in Carbon Nitride (CN). X-ray photoelectron spectroscopy analysis shows that phosphorus (P) atoms have replaced corner carbon atoms in the CN structure. These findings clearly demonstrate that the presence of phosphorus doping improves the electrochemical activity of the electrodes. The designed three-electrode system has a specific capacitance of 189.36 F/g with a current density of 1 A/g. Phosphorus doping has been discovered to play a significant role in improving both specific capacitance and cycling stability. The capacitance retention of the two-electrode solid-state device has 97.2 % after 5000 cycles. These electrochemical evaluations reveal that the xP-CN electrode exhibits superior electrochemical performances than pristine CN. This doping strategy for CN presents a novel and efficient approach for crafting high-performance supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.