Abstract

To elucidate the mechanisms and effects of phosphorus (P) desorption on P fractions in soil aggregates of revegetated ecosystems is fundamental for regulating the P supply and biogeochemical cycle. We selected four aggregate sizes (1–5, 0.5–1, 0.25–0.5, and <0.25 mm) from a desert revegetation chronosequence (11, 31, 40, 57, and 65 years) as our study targets and used the Freundlich model to reveal the dynamics of P desorption and changes in P fractions. The results showed that the calibrated model Q=A−KFdtnd for different size aggregates in seven deserts (two natural and five revegetated) described the P desorption characteristics well. In soil aggregates of revegetated deserts, smaller aggregates with higher specific surface area did not desorb more P, nor did older aggregates after revegetation. The natural P desorption process in aggregates resulted in significant changes in Ca2–P, Ca8–P, Al–P and Fe–P fractions (p < 0.05), and revegetation years also affected P fraction dynamics significantly (p < 0.05). This study highlights that the calibrated kinetic model in the revegetated soil aggregates elucidated the P desorption characteristics, and that the P desorption process drove P fraction changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call