Abstract

Calcareous soils are characterized by high pH and phosphorus (P) fixation capacity. Increasing application of P fertilizer recently has significantly improved soil P concentration, especially available P (Olsen-P) and inorganic phosphate (Pi) fractions. However, there are few data available on the ability of soils with different initial Olsen-P levels to continuously supply P (i.e., P desorption capacity) to crops without additional P fertilization and on which Pi fraction exerts the greatest influence on P desorption capacity. Five soils with different initial Olsen-P levels (0.5, 14.3, 38.4, 55.4, 72.3 mg kg−1, hereafter refer as OP1, OP2, OP3, OP4, and OP5) but similar other soil properties were selected to evaluate the capacity of P desorption and its relationship with Pi fractions. Soil P was sequentially extracted once daily for 16 consecutive days using Olsen solution. The content and proportions of dicalcium phosphate fraction (Ca2-P), octacalcium phosphate fraction (Ca8-P), aluminum phosphorus fraction (Al-P), and iron phosphorus fraction (Fe-P) in Pi increased significantly with the increase of initial Olsen-P (P < 0.01). Applied P fertilizer was mostly stored as Ca8-P in the soil. Soil P desorbed reached an equilibrium after 16 extractions for all soils, and P desorption capacity (12–358 mg kg−1) showed a significant linear relationship with initial Olsen-P (P < 0.01), with an increase of 4.2 mg kg−1 desorbed P per 1 mg kg−1 increase of initial Olsen-P. Ca2-P exerted the conclusive effect on P desorption in the first four extractions, but Ca8-P played a more important role in the 16 extractions. Ca8-P was the greatest potential pool for P desorption after Ca2-P was depleted. P desorption capacity was significantly linearly related to initial Olsen-P (P < 0.01). Different fertilizer use strategies were developed based on P desorption capacity for soils with different initial Olsen-P levels. The present study provided basic data on how to reduce effectively the application amount of chemical P fertilizer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.