Abstract

Surface of poly(vinyl chloride) (PVC) thin films was coated using DOPO‐based polyamide (DBPA) coating and DBPA/Mg(OH)2 nanocomposites (DBPN) coating by dip‐coating process. For this purpose, a new DOPO‐based dicarboxylic acid (DBDA) was synthesized and used for preparation of DBPA and organically surface modification of Mg(OH)2 nanoparticles. The effects of DBPA and DBPN coatings on the morphology, thermal stability, combustion, and mechanical properties of PVC were investigated. The uniform dispersion of Mg(OH)2 nanoparticles (nano‐MDH) and organically coating manner on the surface of the PVC films were confirmed by ATR‐IR spectroscopy, X‐ray diffraction (XRD), field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray, and elemental mapping. From thermal gravimetry analysis (TGA) results, the 10 mass% loss temperature (T10) increased from 268°C to 272°C in PVC coated with DBPA‐containing 10 mass% of modified Mg(OH)2 (MMH). Also the char residue, first and second mass loss temperatures of all PVC coated were increased compared with the neat PVC film. According to microscale combustion calorimetry (MCC) results, the peak of heat release rate (pHHR) and total heat release (THR) were decreased from 128 ± 2 to 69 W/g and 12 ± 1 to 4 ± 2 KJ/g for PVC film coated with DBPA‐containing 10 mass% of MMH, compared with the neat PVC. From tensile test results, tensile strength was increased from 31.78 ± 0.8 to 39.64 ± 0.9 MPa for PVC coated with polyamide‐containing 5 mass% of MMH compared with the neat PVC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call