Abstract

Perfluorooctanoic acid (PFOA), a widespread and emerging organic contaminant of aquatic environments, has high bioaccumulation potential and high toxicity. Consequently, major concerns have been raised worldwide regarding the management of this pollutant in aquatic ecosystems. To thoroughly understand PFOA's toxic effects on aquatic organisms, systematic investigations were conducted on the cellular responses of Microcystis aeruginosa to the environmental concentrations of PFOA under various concentrations as well as phosphorus (P) conditions (concentrations and forms). The results showed that P conditions remarkably affected cyanobacterial growth as well as photosynthetic pigment content, triggered oxidative stress to disrupt the function and structure of the cell membrane, and caused changes in the extracellular and intracellular contents of microcystin-LR (MC-LR). Furthermore, PFOA (100 μg/L) was absorbed by cyanobacterial cells through the stimulation of the secretion of extracellular polymeric substances (EPS) by M. aeruginosa. After entering the cyanobacterial cells, PFOA inhibited photosynthesis, reduced P absorption, induced oxidative damage, lead to a loss of cell integrity evident in scanning electron microscope images, and increased mcyA gene expression to promote MC-LR production. Moreover, the limited P concentration and forms conditions led to increased PFOA absorption by cyanobacterial cells, which further upregulated mcyA gene expression and increased the risk of MC-LR diffusion into the aquatic environment. Our present study provided a theoretical basis and new ideas for understanding and addressing safety issues related to the presence of PFOA in aquatic environments with varying nutritional statuses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.