Abstract
The phosphorus chemical shift (CS) tensors of several ruthenium carbonyl compounds containing a phosphido ligand, micro), bridging a Ru [bond] Ru bond were characterized by solid-state (31)P NMR spectroscopy. As well, an analogous osmium compound was examined. The structures of most of the clusters investigated have approximate local C(2v) symmetry about the phosphorus atom. Compared to the "isolated" PH(2)(-) anion, the phosphorus nucleus of a bridging phosphido ligand exhibits considerable deshielding. The phosphorus CS tensors of most of the compounds have spans ranging from 230 to 350 ppm and skews of approximately zero. Single-crystal NMR was used to investigate the orientation of the phosphorus CS tensors for two of the compounds, Ru(2)(CO)(6)(mu(2)-C [triple bond] C [bond] Ph)(mu(2)-PPh(2)) and Ru(3)(CO)(9)(mu(2)-H)(mu(2)-PPh(2)). The intermediate component of the phosphorus CS tensor, delta(22), lies along the local C(2) axis in both compounds. The least shielded component, delta(11), lies perpendicular to the Ru [bond] P [bond] Ru plane while the most shielded component, delta(33), lies perpendicular to the C [bond]P [bond] C plane. The orientation of the phosphorus CS tensor for a third compound, Ru(2)(CO)(6)(mu(2)-PPh(2))(2), was investigated by the dipolar-chemical shift NMR technique and was found to be analogous, suggesting it to be the same in all compounds. Ab initio calculations of phosphorus magnetic shielding tensors have been carried out and reproduce the orientations found experimentally. The orientation of the CS tensor has been rationalized using simple frontier MO theory. Splittings due to (99,101)Ru [bond] (31)P spin-spin coupling have been observed for several of the complexes. A rare example of (189)Os [bond] (31)P spin-spin splittings is observed in the (31)P MAS NMR spectrum of the osmium cluster, where (1)J((189)Os, (31)P) is 367 Hz. For this complex, the (189)Os nuclear quadrupolar coupling constant is on the order of several hundred megahertz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.