Abstract

The HBP radical was generated via the reaction of laser ablated boron atom with PH3 in a solid neon matrix, which is identified via IR spectroscopy with isotopic substitutions and quantum chemical calculations. The results show that HBP has a 2 Π electronic ground state with a short B-P bond. Bonding analysis indicates that besides an electron-sharing σ bond, there are two degenerate π bonding orbitals that are occupied by three electrons, resulting in a bond order of two and half between P and B. This is in sharp contrast to the bonding properties of the isovalent HNB, which was characterized to be a N≡B triply bonded σ radical with the unpaired electron locating on the B atom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call