Abstract

Long-term application of fertilizer or manure can increase the potential for P loss risk to ground and surface waters due to C and P competitive sorption-desorption. The aim of this study was to investigate the effect of long-term agricultural fertilizer application on dissolved organic carbon (DOC) and dissolved total phosphorus (DTP) loss. The study was conducted at the Yanting Agro-Ecological Experimental Station in Sichuan Province, People's Republic of China, during the 2012 rainy season. The results show that the variations in C and P leaching effects in fertilized soils exposed to natural rainfall events. As expected, application of inorganic and organic fertilizers increases DOC and DTP concentrations in soil and decreases the C:P ratio. Similarly, application of inorganic and organic fertilizers results in greater C and P leaching than that seen in unfertilized soils. The DOC flux was higher in subsurface runoff than in overland flow. In contrast, overland flow was the main pathway for P transport; subsurface runoff accounted for a smaller proportion of the total P transport. The increase of DOC and DTP was higher after use of organic manures than after treatment with inorganic fertilizers. DOC derived from surface-applied organic manures was found to leach at higher rates than that seen for DTP derived from the same source. However, organic manure-derived DOC was found to transport from soil prior to P, when they are surface-applied, demonstrating a higher sorption affinity of P over DOC compared to inorganic fertilization. Therefore, we should pay more attention to the P mobilized through long-term fertilization and enhance the P uptake due to C and P competitive sorption-desorption, and avoid potential leaching loss of P during rainfall process. (C) 2014 Elsevier B.V. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.