Abstract

This study sought to develop a highly efficient adsorbent material for phosphorus (P) removal via valorization of industrial Escherichia coli biomass waste. To ensure an easy and fast recovery after the sorption process, the E. coli biomass waste was immobilized into polysulfone matrix. Additionally, to improve P sorption capacity, the sorbent surface was coated with polyethylenimine (PEI) and further chemically modified. The P uptakes of the developed sorbent (decarboxylated PEI-modified polysulfone-biomass composite fiber, DC-PEI-PEF) were significantly affected by pH. Moreover, the maximum sorption capacity (qmax) of DC-PEI-PEF was estimated as 30.46 ± 1.09 mg/g at neutral pH, as determined by a Langmuir isotherm model. Furthermore, DC-PEI-PEF could reach sorption equilibrium within 5 min and exhibited reusability potential. The partition coefficient of the newly developed material (DC-PEI-PEF) was calculated as 0.387 mg/g⋅μM at 4 mg/L of initial P concentration and decreased as initial P concentrations increased. Therefore, DC-PEI-PEF could be suggested as a promising adsorbent for application in direct phosphorus removal from natural aquatic environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.