Abstract

Field-dependent 31P solid-state NMR studies demonstrate that the line shape in spectra of β-VOPO4 depends on 51V–31P direct and indirect spin-spin interactions (M2 (51V, 31P) = 101(23) × 106 rad2 s–2, 2Jiso (51V, 31P) = 48(5) Hz) and, to a lesser extent, on 31P chemical shift anisotropy (δiso = –10.4(2), Ω = δ11 – δ33 = 22(2) ppm) and 31P–31P interactions (M2 (31P, 31P) = 6.7(1) × 106 rad2 s–2). In contrast, homonuclear dipolar interactions play an important role for the field and spinning rate dependent 31P spin-lattice relaxation via paramagnetic impurities (T1 = 20–60 s). Vanadium-51 magic-angle spinning NMR spectra indicate a sizeable chemical shift anisotropy (δiso = –754(1), δ11 = –336(10), δ22 = –344(6), δ33 = –1581(8) ppm) and nuclear quadrupole interaction (χ = 1.5(1) MHz, η = 0.35(5)); the principal axis systems of both interactions are clearly not coincident, with an angle of 35(5)° between the greatest component of the electric field gradient tensor and δ33.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call