Abstract

The introduction of phosphorous (P), and oxygen (O) heteroatoms in the natural honeydew chemical structure is one of the most effective, and practical approaches to synthesizing activated carbon for possible high-performance energy storage applications. The performance metrics of supercapacitors depend on surface functional groups and high-surface-area electrodes that can play a dominant role in areas that require high-power applications. Here, we report a phosphorous and oxygen co-doped honeydew peel-derived activated carbon (HDP-AC) electrode with low surface area for supercapacitor via H3PO4 activation. This activator form phosphorylation with cellulose fibers in the HDP. The formation of heteroatoms stabilizes the cellulose structure by preventing the formation of levoglucosan (C6H10O5), a cellulose combustion product, which would otherwise offer a pathway for a substantial degradation of cellulose into volatile products. Therefore, heteroatom doping has proved effective, in improving the electrochemical properties. The improved performance is attributed to the high phosphorous doping with a hierarchical porous structure, which enables the transportation of ions at higher current rates. The high specific capacitance of 486, and 478 F/g at 0.6, and 1.3 A/g in 1M H2SO4 electrolyte with a prominent retention of 98% is observed for 2M H3PO4 having an impregnation ratio of 1:4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.