Abstract

Phosphorous-doped single wall carbon nanotubes were synthesized by an aerosol-assisted chemical vapor deposition by adding triphenilphosphine in the ethanol-ferrocene precursor solution. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were carried out along with density functional theory (DFT) calculations in order to understand the nature of phosphorous chemical doping. Binding energies of P 2p electrons, experimentally measured by XPS, are 129.6 eV and 134.3 eV. DFT calculations allow for the assignment of these levels to substitutional phosphorous and phosphorous-oxygen groups, respectively. The nature of phosphorous doping is elucidated through band structure and density of states calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.