Abstract

Two thermostable DNA polymerases with proofreading activity--Vent DNA polymerase and Pfu DNA polymerase--have attracted recent attention, mainly because of their enhanced fidelities during amplification of DNA sequences by the polymerase chain reaction. A severe disadvantage for their practical application, however, results from the observation that due to their 3' to 5' exonuclease activities these enzymes degrade the oligodeoxynucleotides serving as primers for the DNA synthesis. It is demonstrated that this exonucleolytic attack on the primer molecules can be efficiently prevented by the introduction of single phosphorothioate bonds at their 3' termini. This strategy, which can be easily accomplished using routine DNA synthesis methodology, may open the way to a widespread use of these novel enzymes in the polymerase chain reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.