Abstract

Functional electrodes with unique ion storage and rapid ion migration properties through microstructure and chemical-doping modulation are always crucial for rapid charging devices such as micro-supercapacitors (MSCs). In this work, proton exchange membrane named phosphoric acid (PA) doped polybenzimidazole membrane (PA-PBI) is studied as a unique precursor for assembling laser induced graphene (LIG) based electrodes (PA-PBI-LIG) in MSCs, toward the enhancement of energy storage performance via simultaneous heteroatoms doping, microporous structure improving and proton-conducting substrate introducing. By tuning PA concentration, the microporous structures perform adjustable specific surface area from 20.2 to 384.46 m2 g−1, thereby enhancing changeable capacitance from 2.44 mF cm−2 to 149 mF cm−2, with highest specific energy density of 20.7 μWh cm−2. To understand the mechanism, PA and the initiated free radicals are proposed to motivate microporous formation and heteroatoms doping during laser fabrication via unique laser absorption properties of PA. Additionally, PA-PBI substrates work synergistically on ions migration with microporous graphene, potentially promoting energy storage efficiency especially in the acid-based electrolyte. Overall, the raised PA-PBI-LIG electrodes simultaneously promote microporous, heteroatomic and multilayered graphene with proton conducting substrate, which show great potentials in micro energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call