Abstract

Undoped and doped poly(2,5‐benzimidazole) (ABPBI) membrane was prepared by solvent casting method using methane sulfonic acid as a solvent and phosphoric acid (H3PO4) as a doping agent. The concentration of H3PO4 was varied from 0 to 60 vol% to enhance the proton conductivity of the ABPBI membrane at higher temperature. Wide angle X‐ray diffraction analysis showed a decrease in crystallinity in ABPBI membrane with increase in H3PO4 doping concentration. The molecular signature and the presence of H3PO4 was observed in 1000–1500 cm−1 in the Fourier transform infrared spectra, which was also supported by a corresponding weight loss at 180°C–200°C in the thermogravimetric analysis. Undoped ABPBI membrane registered the Young's modulus (E) and hardness (H) values of 2.46 and 0.92 GPa, respectively, and the corresponding E and H values for 1.65 doping level of 60 vol% H3PO4 doped ABPBI membrane were 0.14 and 0.067 GPa, respectively. The 60 vol% H3PO4 doped ABPBI membrane with doping level of 1.65 showed highest proton conductivity value of 2.2 × 10−2 S/cm. The impedance spectroscopic analysis and the equivalent circuit model were discussed to understand the nature of proton conduction in H3PO4 doped ABPBI membrane. POLYM. ENG. SCI., 56:1366–1374, 2016. © 2016 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.