Abstract
Proanthocyanidin (PA) is a promising dentin biomodifier due to its ability to stabilize collagen fibrils against degradation by matrix metalloproteinases (MMPs); however, the most effective protocol to incorporate PA into bonding procedures is still unclear. This study evaluated the effect of dentin biomodification with a PA acid etchant on MMP activity, adhesive interface morphology and resin-dentin microtensile bond strength. Sound extracted human molars were flattened to expose dentin and acid-etched for 15 s according to the groups: EXP - experimental phosphoric acid; EXP+PA - experimental phosphoric acid 10% PA; TE - total-etching system; SE - self-etching system. Samples were restored with composite resin and stored in distilled water (37ºC). MMP activity and interface morphology were analyzed after 24 h by in situ zymography (n=6) and scanning electron microscopy (n=3), respectively. The resin-dentin microtensile bond strength (μTBS) was evaluated after 24 h and 6 months storage (n=6). Significantly higher MMP activity was detected in etched dentin compared with untreated dentin (p<0.05), but no difference among acid groups was found. Resin tags and microtags, indicative of proper adhesive system penetration in dentinal tubules and microtubules, were observed along the hybrid layer in all groups. There was no difference in μTBS between 24 h and 6 months for EXP+PA; moreover, it showed higher long-term μTBS compared with TE and EXP (p<0.05). The results suggest that 15 s of biomodification was not sufficient to significantly reduce MMP activity; nonetheless, EXP+PA was still able to improve resin-dentin bond stability compared with total- and self-etching commercial systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.