Abstract

A light-emitting diode structure, consisting of a p-GaN layer, a CdZnO/ZnO quantum-well (QW) structure, a high-temperature-grown ZnO layer, and a GaZnO layer, is fabricated. Under forward bias, the device effectively emits green-yellow light, from the QW structure, at the rim of device mesa. Under reverse bias, electrons in the valence band of the p-GaN layer move into the conduction band of the GaZnO layer, through a QW-state-assisted tunneling process, to recombine with the injected holes in the GaZnO layer, for emitting yellow-red and shallow ultraviolet light over the entire mesa area. Also, carrier recombination in the p-GaN layer produces blue light. By properly designing the thickness of the high-temperature grown ZnO layer, the emission intensity under forward bias can be controlled such that, under alternating-current operation at 60 Hz, the spatial and spectral mixtures of the emitted lights of complementary colors, under forward and reverse biases, result in white light generation based on persistence of vision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call