Abstract

Small-molecule detection is important for many applications including clinical diagnostics, drug discovery, environmental screening, and food technology. Current techniques suffer from various limitations including cost, complex sample processing, massive instrumentation, and need for expertise. To overcome these limitations, a new optical immunosensing assay for the detection of small molecules was developed and assessed with the targets estrone (E1) and estradiol (E2). For this purpose, phosphorescent indicators were designed based on the tetrabenzoporphyrin skeleton directly linked to E1 or E2, or attached through a linker, with phosphorescence lifetimes in the range of ~100–~300 μs. The assay is an indicator displacement assay (IDA). The best performances of our optical immunosensor were obtained with the indicators E1-L-Por and E2-L-Por. As they bound to specific polyclonal antibodies, their phosphorescence (τ ~200 μs) was quenched. When an endogenous competitor was added, the indicator was displaced, and the phosphorescence was immediately recovered. These effects were measured with a new optical device, described here, and able to detect picograms of luminescent molecules emitting in the NIR range, simply by measuring phosphorescence decay. This radical switch-off/switch on process demonstrates that E1-L-Por and E2-L-Por are good candidates for in vivo and in vitro immunosensing of E1 and E2. Importantly, the present immunosensing assay can be easily adapted to other small molecules such as other hormones and drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call