Abstract
Phosphates, both inorganic and organic, play fundamental roles in numerous biological and chemical processes. The biological functions of phosphates connect with each other, analysis of single phosphate-containing biomolecule therefore cannot reveal the exact biological significance of phosphates. Sensor array is therefore the best choice for differentiation analysis of physiological phosphates. Lanthanide ions possess high affinity toward physiological phosphates, while lanthanide ions can also efficiently quench the luminescence of quantum dots (QDs). Taking lanthanide ions as cartridges, here we proposed a sensor array for sensing of physiological phosphates based on lanthanide ions-modified Mn-doped ZnCdS phosphorescent QDs in the manner of indicator-displacement assay. A series of lanthanide ions were selected as quencher for phosphorescent QDs. Physiological phosphates could subsequently displace the quencher and recover the phosphorescence. Depending on their varied phosphorescence restoration, a sensor array was thus developed. The photophysics of phosphorescence quenching and restoration were studied in detail for better understanding the mechanism of the sensor array. The exact contribution of each sensor element to the sensor array was evaluated. Those sensor elements with little contribution to the differentiation analysis were removed for narrowing the size of the array. The proposed sensor array was successfully explored for probing nucleotide phosphates-involved enzymatic processes and their metabolites, simulated energy charge changes, and analysis of physiological phosphates in biological samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.