Abstract
Enzyme mimics (EMs) with intrinsic catalysis activity have attracted enormous interest in biomedicine. However, there is a lack of environmentally adaptive EMs for sensitive diagnosis and specific catalytic therapeutics in simultaneous manners. Herein, the coordination modulation strategy is designed to synthesize silicon-based phosphorescence enzyme-mimics (SiPEMs). Specifically, the atomic-level engineered Co-N4 structure in SiPEMs enables the environment-adaptive peroxidase, oxidase, and catalase-like activities. More intriguingly, the internal Si-O networks are able to stabilize the triplet state, exhibiting long-lived phosphorescence with lifetime of 124.5 ms, suitable for millisecond-range time-resolved imaging of tumor cells and tissue in mice (with high signal-to-background ratio values of ∼60.2 for in vitro and ∼611 for in vivo). Meanwhile, the SiPEMs act as an oxidative stress amplifier, allowing the production of ·OH via cascade reactions triggered by the tumor microenvironment (∼136-fold enhancement in peroxidase catalytic efficiency); while the enzyme-mimics can scavenge the accumulation of reactive oxygen species to alleviate the oxidative damage in normal cells, they are therefore suitable for environment-adaptive catalytic treatment of cancer in specific manners. We innovate a systematic strategy to develop high-performance enzymemics, constructing a promising breakthrough for replacing traditional enzymes in cancer treatment applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.