Abstract

We show that oxidation of phosphorene can lead to the formation of a new family of planar (2D) and tubular (1D) oxides and sub-oxides, most of them insulating. This confers to black phosphorus a native oxide that can be used as barrier material and protective layer. Further, the bandgap of phosphorene oxides depends on the oxygen concentration, suggesting that controlled oxidation can be used as a means to engineer the bandgap. For the oxygen saturated composition, P$_2$O$_5$, both the planar and tubular phases have a large bandgap energy of about 8.5eV, and are transparent in the near UV. These two forms of phosphorene oxides are predicted to have the same formation enthalpy as o$^\prime$-P$_2$O$_5$, the most stable of the previously known forms of phosphorus pentoxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.