Abstract

This work aims at characterizing for the first time the 31P spin interactions determining the nuclear magnetic resonance (NMR) properties of solid black phosphorus (bP) and of its few-layer exfoliated form (fl-bP). Indeed, the knowledge of these properties is still very poor, despite the great interest received by this layered phosphorus allotrope and its exfoliated 2D form, phosphorene. By combining density functional theory (DFT) calculations and solid-state NMR experiments on suspensions of fl-bP nanoflakes and on solid bP, it has been possible to characterize the 31P homonuclear dipolar and chemical shift interactions, identifying the network of 31P nuclei more strongly dipolarly coupled and highlighting two kinds of magnetically nonequivalent 31P nuclei. These results add an important missing piece of information to the fundamental chemico-physical knowledge of bP and support future extensive applications of NMR spectroscopy to the characterization of phosphorene-based materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call