Abstract

AbstractArynes are fleeting, high‐energy intermediates that undergo myriad trapping reactions by nucleophiles. Their unusual reactivity compared to other electrophiles can spur unexpected mechanistic pathways enroute to the formation of benzenoid products. Herein we explore a particularly unique case of thermally generated arynes reacting with phosphoranes to form helical dibenzothiophenes and ‐selenophenes. Multiple new helical polycyclic aromatic products are reported. DP4+ and X‐ray crystallographic analysis were used in tandem to confirm the structural topologies of selected products and to demonstrate the utility of DP4+ for distinguishing between isomeric polycyclic aromatic compounds. Lastly, we discuss a plausible mechanism consistent with DFT computations that accounts for the product formation; namely, ligand coupling (i.e., reductive elimination) within a hypervalent, pentacarbon‐ligated σ‐phosphorane furnishes the dibenzothio‐ or dibenzoselenophene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.