Abstract

Cost-effective and facile synthetic routes to organic ligands, along with porous materials that exhibit exceptional gas-storage properties, promise significant industrial applications. Here, a two-step synthesis of novel organophosphorus ligands without metal catalysts is reported. These ligands serve as versatile linkers for the construction of metal-organic frameworks (MOFs) incorporating various metal ions, including zinc and copper. One of the zinc-based MOFs demonstrates remarkable gas-storage properties, with a hydrogen (H2) capacity exceeding 2.5 wt% at 77 K and 100 kPa as well as a carbon dioxide (CO2) capacity exceeding 20 wt% at 298 K and 100 kPa. Furthermore, this zinc-based MOF can be synthesized through a solvothermal process on the gram scale that yields high-quality single crystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call