Abstract

The molecular mechanisms of diabetic cardiomyopathy (DCM) development and D-pinitol (DP) in its treatment remain unclear. The present study is to explore the underlying mechanism of DCM in an elderly diabetic mouse model and to seek the protective targets of DP by phosphoproteomics. We used streptozotocin to induce diabetes in SAMP8 and DP (150mg/kg/day) intragastrically administrated to diabetic mice for 8weeks. The heart tissues were harvested for label-free phosphoproteomic analysis from diabetic mice. Some differentially regulated phosphorylation sites were confirmed by parallel reaction monitoring. Our results showed that 612 phosphorylation sites on 454 proteins had their phosphorylation levels significantly changed in the heart of untreated diabetic mice (DM). Of these phosphorylation sites, 216 phosphorylation sites on 182 proteins were normalized after DP treatment. We analyzed the functional signaling pathways in the heart of DP treated diabetic mice (DMT), including glucagon signaling pathway, insulin signaling pathway, mitophagy, apoptosis, and longevity regulating pathway. Two consensus motifs identified were targeted by Src and epidermal growth factor receptor between DMT and DM groups. Our study might help to better understand the mechanism of DCM, provide novel targets for estimating the protective effects of DP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.