Abstract
Dopaminergic neurons are known to be vulnerable to age-related neuronal disorders due to reactive oxygen species (ROS) generated during dopamine metabolism. However, it remains unclear what kinds of proteins are involved in the response to oxidative stress. We examined changes in whole proteins and phosphoproteins in the human dopaminergic neuroblastoma cell line SH-SY5Y under oxidative stress induced by the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). Proteins of SH-SY5Y cells at various stages of oxidative stress were separated by two-dimensional gel electrophoresis for comparative analysis. Increase in glutathione-S-transferase pi was detected on SYPRO Ruby-stained gels by computer-aided image analysis. Stress-induced alterations in phosphoproteins were detected by Pro-Q Diamond staining. Elongation factor 2, lamin A/C, T-complex protein 1, and heterogeneous nuclear ribonucleoprotein H3 were identified by MALDI-TOF mass spectrometry as stress-responsive elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.