Abstract

Because reversible protein phosphorylation is central to biological regulation, many methods have been developed for the systematic parallel analysis of the phosphorylation status of large sets of proteins. To directly survey the extent of protein phosphorylation and the distribution of phosphoproteins in biological systems, we used a phosphoprotein staining method, Pro-Q Diamond dye, for the high-throughput identification of phosphoproteins. The specificity of the method was validated with protein standards and subsequently applied to an analysis of total protein from human liver Chang's cells. Proteins were separated by 2-DE, then sequentially stained with Pro-Q Diamond and Coomassie Blue G-250. After image analysis, the proteins in gel spots containing phosphoproteins were identified by MALDI-TOF/TOF-MS. A total of 269 phosphoproteins were identified, and 27 were known phosphoproteins in the SwissProt database. By comparing the relative volumes of the phosphoprotein map and the total protein map, the extent of protein phosphorylation was observed. The phosphoprotein staining method combined with 2-DE also detected polymorphisms of the phosphoproteins, and could distinguish highly abundant, but slightly phosphorylated proteins from less abundant, highly phosphorylated ones. We conclude that the phosphoprotein staining method can be used for global, quantitative phosphorylation detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call