Abstract

We previously reported that the signal transduction of cryptogein, an elicitor of defense reactions in Nicotiana tabacum cells, involves upstream protein phosphorylation. In the present study, induction of these early physiological events was further investigated with inhibitors of protein phosphatase (PP), okadaic acid, and calyculin A. Calyculin A mimicked the effects of cryptogein, inducing an influx of calcium, an extracellular alkalinization, and the production of active oxygen species (AOS), suggesting that during cryptogein signal transduction the balance between specific protein kinase (PK) and PP activities was modified. To identify the phosphorylated proteins that could be involved early in the elicitor signaling pathway, we analyzed by 2-D electrophoresis the in vivo phosphorylation status of proteins after cryptogein, staurosporine, and calyculin A treatments of tobacco cells (5 min). Of about 100 phospho-labeled polypeptides, 19 showed increased 32P incorporation after 5 min of cryptogein treatment. Phosphorylation of 12 of the 19 polypeptides depended upon calcium influx. Staurosporine inhibited the phosphorylations induced by cryptogein whereas calyculin A activated the phosphorylation of 18 of these polypeptides. This study highlighted the role of PKs and/or constitutive active PPs whose activation and inhibition, respectively, resulted in an increased phosphorylation of proteins that may be involved in cryptogein signal transduction. Identification of the phosphoproteins is in progress and will increase our knowledge of signal transduction pathways implicated in plant defense responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call