Abstract

Protein phosphorylation underlies numerous cellular signaling processes. Since a reliable prediction of phosphorylation site(s) based on a consensus amino acid sequence is rather difficult to date, determination of phosphorylation site(s) in phosphoproteins is a crucial step toward the understanding of their function at the molecular level. A conventional protocol for the determination of phosphorylation sites utilizes radioactive labeling of a phosphoprotein by 32P and purification of digested peptides carrying radioactivity, followed by Edman degradation. This method is not only tedious, but also indirect because the evidence will be based on disappearance of a phenylthiohydantoin signal from the degradation cycle where the 32P radioactivity is eluted. Several methodologies have been developed to determine the phosphorylation sites directly by using mass spectrometry. These include collision-induced dissociation (CID) and post-source decay (PSD), both of which tend to produce fragment ions less efficiently as the number of residues exceeds 20. Moreover, in both decay processes, there is a tendency for the phosphate group to be removed during the breakdown of the main peptide chain. We report a method that allows direct observation of phosphorylated peptide fragments of phosphopeptides exceeding 20 residues by using an in-source decay fragmentation by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, yielding results which are difficult or impossible to obtain by existing methods using CID or PSD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call