Abstract

Acyl carrier protein (ACP) is an essential cofactor of fatty acid synthase. In plants, ACP is synthesized in the cytosol as a larger precursor protein and then is imported into the plastid where it is processed to a smaller mature form. The active form of ACP uses a covalently linked 4[prime]-phosphopantetheine prosthetic group derived from coenzyme A to covalently bind the acyl intermediates during fatty acid synthesis. The prosthetic group is added to ACP by holoACP synthase. This enzyme activity is associated with both the plastidial subcellular fraction and the soluble, or cytoplasmic, fraction. To gain further insight into potential in vivo pathways for the synthesis and maturation of ACP, in this study we examined whether precursor holoACP can be imported by isolated spinach (Spinacia oleracea) chloroplasts. Precursor holoACP containing a [35S]phosphopantetheine prosthetic group was prepared, and the radiolabel was used to demonstrate import of the phosphopantethenylated protein into isolated chloroplasts. In addition, timed chloroplast import assays indicated that in vitro import of the phosphopantethenylated protein is at least as efficient as import of the precursor apoprotein. Evidence was also obtained for a low level turnover of the prosthetic group among endogenous plastidial ACPs when coenzyme A was supplied exogenously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.