Abstract

Glutamate excitotoxicity is an important contributor to neuronal loss. Glutamate-induced Ca(2+) deregulation and accompanying mitochondrial depolarization are closely associated with the onset of apoptotic and necrotic neuronal death. We investigated the role in these phenomena of 2-oxoglutarate dehydrogenase (OGDH), the enzyme participating in mitochondrial degradation of glutamate. To achieve this goal, we used specific effectors of cellular OGDH, succinyl phosphonate and its phosphonoethyl ether. Preincubation of cerebellar granule neurons with these phosphono analogues of 2-oxoglutarate was shown to protect the cells from glutamate-induced Ca(2+) deregulation and irreversible mitochondrial depolarization, followed simultaneously by fluorescence of fura-2FF and rhodamine 123, respectively. The protection was characterized by delay in onset and decreased propagation of Ca(2+) deregulation and by reversibility of the associated mitochondrial depolarization. Compared to its phosphonoethyl ether, succinyl phosphonate exhibited both higher affinity to OGDH in vitro and better protection from Ca(2+) deregulation in situ, supporting the assumption that neuroprotection by phosphonates involves their interaction with cellular OGDH. Preincubation of cerebellar granule neurons with succinyl phosphonate decreased neuronal death after excitotoxic action of glutamate. Thus, specific inhibitors of OGDH alleviate glutamate-induced calcium deregulation, mitochondrial depolarization, and neuronal death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.