Abstract

Surface molecular transformations on nanoscale metal oxides are inherently complex, and directing those reaction pathways is still challenging but important for designing their various applications, including molecular sensing, catalysts, and others. Here, a rational strategy to direct a reaction pathway of volatile carbonyl compounds (nonanal: biomarker) on single-crystalline ZnO nanowire surfaces via molecular modification is demonstrated. The introduction of a methylphosphonic acid modification on the ZnO nanowire surface significantly alters the surface reaction pathway of nonanal via suppressing the detrimental aldol condensation reaction. This is directed by intentionally decreasing the probability of two neighboring molecular activations on the nanowire surface. Spectrometric measurements reveal the correlation between the suppression of the aldol condensation surface reaction and the improvement in the sensor performance. This tailored surface reaction pathway effectively reduces the operating temperature from 200 to 100 °C while maintaining the sensitivity. This is because the aldol condensation product ((E)-2-heptyl-2-undecenal) requires a higher temperature to desorb from the surface. Thus, the proposed facile strategy offers an interesting approach not only for the rational design of metal oxide sensors for numerous volatile carbonyl compounds but also for tailoring various surface reaction pathways on complex nanoscale metal oxides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call