Abstract

In this work, a simple and novel method coupling solid phase extraction (SPE) with X-ray fluorescence spectrometry (XRF) is proposed for the simultaneous determination of 15 kinds of trace rare earth elements (REEs) in water samples. A phosphonic acid functionalized metal-organic framework named BPG-MIL-53(Al) was prepared via postsynthetic modification and served as an efficient adsorbent for these REEs. The prepared BPG-MIL-53(Al) could almost completely adsorb REEs in 5 min under neutral conditions. After filtration, REEs-adsorbed BPG-MIL-53(Al) was deposited on a filter membrane to form a thin film, which was directly analyzed by XRF. The XRF intensities of the REEs-retained MOF disc remained almost unchanged after six months. Taking advantage of this strategy, XRF was able to quantitate ng mL-1 levels of REEs in water samples, achieving impressive limits of detection in the range of 0.4-4.7 ng mL-1. The proposed method was applied to the on-site collection and analysis of REEs in real water samples with desirable accuracy and spike recoveries obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call