Abstract
14-3-3s are evolutionarily conserved eukaryotic regulatory proteins that are involved in diverse biological processes. The common mode of action for the 14-3-3 proteins is through the binding of phosphorylated target proteins. In many species, multiple 14-3-3 isoforms exist and these different isoforms can exhibit distinct ranges of target interactions. The dimerization of 14-3-3s is central to their function. 14-3-3 isoforms can form different combinations of homo- and heterodimers, which contribute to the broad functional diversity of the family. In this study, we showed that phosphomimetic mutation of a conserved serine residue in the dimerization interface of 14-3-3 isoforms, Ser-62, not only affects the ability of Arabidopsis 14-3-3ω to form homodimers, but alters the range of 14-3-3 family members with which it can form heterodimers. Furthermore, we demonstrated that the phosphorylation status of Ser-62 can regulate the binding of 14-3-3ω to target proteins, suggesting that Ser-62 might be a conserved key element to modulate target binding in both plants and animals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.