Abstract

Phospholipids and bile acids, by virtue of their amphiphilic properties, can interact in nonpolar media forming "inverted" structures (micelles) which presumably have an hydrophilic core and might act as diffusional carriers (ionophores) of electrolytes across low dielectric constant media or lipid membranes. The Na+ ionophoretic capability of various purified phospholipids and the modulating effects of bile acids and phosphatidylcholine was examined by: (a) measurement of 22Na+ partition into the organic phase (chloroform) of a two-phase system and (b) direct measurement of the translocation of 22Na+ across a bulk chloroform phase separating two aqueous phases in a Pressman cell. All phospholipids tested, except for phosphatidylcholine, showed ionophoretic capability for Na+ at micromolar concentrations. Cardiolipin and phosphatidylserine were the most efficient Na+ carriers, comparable with monensin, an established Na+ ionophore. In contrast, cholic acid as well as other bile acids demonstrated only marginal or no Na+ ionophoretic capability. However, hydroxylated bile acids (particularly cholic acid), sodium dodecyl sulfate and Triton X-100, which can induce and stabilize inverted structures in lipid membranes, were able to increase 5- to 8-fold the phospholipid-mediated Na+ transport. Interaction of cardiolipin with Na+ in the chloroform phase followed a rectangular hyperbolic function with an apparent Kd within the physiological Na+ concentration range (16.9 +/- 5.1 mM). Addition of cholic acid to the cardiolipin-containing organic phase resulted in a 10-fold increase of maximal Na+ uptake and no change in apparent Kd. The effect of cholic acid on both cardiolipin-mediated Na+ partition and Na+ translocation across the chloroform phase showed a marked dependence on pH, being greater at pH 7.4.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.