Abstract

The transfer of fluorescent-labeled N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (N-NBD-PE) between phosphatidylcholine-taurocholate mixed micelles was measured by monitoring the increase in fluorescence as N-NBD-PE, initially contained in mixed micelles at self-quenching concentrations, was diluted into unlabeled mixed micelles. The half-times for transfer of a homologous series of N-NBD-PEs differing in saturated acyl chain length from 11 to 16 carbons increased with acyl chain length from 4 to 35 s. The half-times for transfer of the same N-NBD-PEs between phosphatidylcholine vesicles without taurocholate were 200-6000 times slower than those between the mixed micelles. A kinetic analysis of initial transfer rate data was used to determine the mechanistic model that best described the data. According to this analysis, the increased rate of intermicellar phospholipid transfer relative to that of intervesicular transfer is a result of (1) exchange between micelles during transient micelle collisions which is not observed between vesicles and (2) an increased rate of monomer diffusion due to a faster rate of phospholipid dissociation from mixed micelles into the water phase than from vesicles. The relative significance of dissociation from mixed micelles into the water phase than from vesicles. The relative significance of collision-dependent versus monomer diffusion transfer increases with acyl chain length and hydrophobicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.