Abstract
The effect of dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ethyl esters on the individual molecular species composition of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) was determined in mouse liver nuclei. After a 10 day feeding period, there was a depletion of the sn-2 position of n-6 polyunsaturated fatty acids (PUFA) and substitution with n-3 PUFA. EPA feeding significantly increased (P less than 0.05) diacyl PC and PE 16:0-20:5, n-3, 16:0-22:6,n-3, 18:0-20:5,n-3 and 18:0-22:6,n-3 relative to control (safflower oil ethyl ester fed) animals. In comparison, DHA feeding significantly increased (P less than 0.05) 22:6 n-3-containing species, specifically 18:1-22:6,n-3, 16:0-22:6,n-3 and 18:0-22:6,n-3 in PC, and 18:1-22:6,n-3, 16:0-22:6,n-3 and 18:0-22:6,n-3 in PE. In addition, the presence of 18:0-20:5,n-3 PC in the nuclei of DHA-fed rats and of 18:2-20:5,n-3, 18:1-20:5,n-3 and 18:0-20:5,n-3 in nuclear PE indicate that incorporation of DHA retroconversion (22:6,n-3-->20:5,n-3) products. These results indicate both EPA and DHA are extensively incorporated into nuclear phospholipids, and therefore could potentially influence gene function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.